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Abstract New upper bounds are given for the expected value of a convex

function. The bounds employ subgradient information and the conjugate
" , .- r •

function. We-derive the bounds and comparek with previous bounds with

different information requirements.

Keywords: Bounds; Convex Functions; Stochastic Programs; Utility Functions,
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I INTRODUCTION

Evaluating the expectation of a convex function is a central require-

ment in utility theory (see, for example, Fishburn 119701) and stochastic

programming (see, for example, Dempster [1980]). In general, these problems

involve optimizing the expectation of some function of certain random

variables and decision parameters. We assume that this function is convex

and that certain properties of the convex function and the underlying

probability measure are known. We show that new upper bounds on this

expectation are available when the information includes subgradient and

conjugate function information. This result is especially useful when the

original integral is not eAcily computable as we show below.

The most basic bound on expectations of convex functions is Jensen's

lower bound (Jensen (19061 which requires knowing only the finite means of

the random variables. Madansky [19591, following Edmundson [19561, gave an

upper bound based on the theory of moment spaces. This bound again requires

finite mean value information and a bounded n-dimensional rectangular

domain of stochastically independent random variables. Ben-Tal and

Hochman [1972 extended and refined the Edmundson-Madansky bound by

including information of the expected value of the absolute difference

between the random variable and its mean.Gassmann and Ziemba 119861

provide a weaker bound that does not require independence (as in Dupacova

[19741) or n-dimensional bounded regions. Frauerdorfer [19661 provides the

extension of the Edmundson-Madansky bound with dependencies and know-

ledge of the joint expectations of the random variables.
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The general process of obtaining these bounds as solutions of

moment problems is described in Birge and Wets 11986. The solution of

linear approximations is given in Birge and Wets 119871. Explicit solution

procedures also appear in Ermoliev, Gaivoranski and Nedeva 119871 and Cipra

L"761. They are also used in Dula (19861 to provide bounds for the expecta-

tion of convex functions with additional properties given first and second

moment information.

Our results differ from the above results in our not requiring explicit

moment information but instead information regarding the conjugate

function and the expectation of the gradient and the inner product of the

gradient and the random vector. We first give a one-dimenstional result in

Section 2. Section 3 provides an extension in n-dimensions. Section 4

compares our bound with previous bounds in IR and Section 5 provides the

comparison in Fin . Section 6 describes possible refinements, and Section 7

gives conclusions.

2. AN UPPER BOUND IN I

Let (9, 1, F) be a probability measure space and Let X: - (a,b) be

a random variable, where -oo,a<b <, +o, with distribution F.

Let ): (a,bl --# IR be a convex differentiable function We denote

expectation with respect to F by E and throughout this section we assume

that Et(X), E4)(XI and EX,0 (XI exist and are finite.



A

Theorem 2.1 Let : (a,b)--.l be a convex differentiabLe increasing function

and assume that E XM>o. Then,

IEX4>'VX
E(O(Il V I E@o'(X) I:- t2I.1)

Proof: For any convex differentiabLe function 4) on (a,bJ, the foLtowing

inequality holds:

Vs) - 4tj , (s-t) *' It) for att s,t E (a,b) (2.2)

Set tMX [clearly in (a,b)1, s = EX V')X)
E4'IXI

Since 4) is increasing and E4'(X>o, sE(a,b). Substituting s,t in 12.2)

we obtain

01X), ( [ EX,$'(XI - EX ' X I OX (2.31
E4'IX) E4)'(X)

Take expectation on both sides of (2.3) with respect to F and

observe that in the right hand side of f2.3) (with E4'(XI>o):

EX4)IX) E$'(XJ - EX'(X) = 0.
E rs'IX)

The result follows., 0
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Remarks 2?1

(1) If 4 is strictly increasing aria concave then ineqUality (2.1) is reversed.

(21 If 4 is strictly decreasing, then assuming E,[X)<o, inequality (2.1) is

still valid.

(3) The differentiablity assumption on b can be relaxed. For if 4t is

convex its Left and right derivatives 4o'{x) and 4' xl exist, and are

finite and non-decreasing. Moreover the subdifferential of 4 is

given by, Z4[xi = (zeIR : 4'x),<z,<>'x) (see e.g Rockafetlar (1970j, pp.

228-229).

Theorem 2.1 remains valid if we substitute any

z e Z 4 (x) = (4)'- (xI, 0', (x)) for 4',x).

Jensen's inequality for a convex function , provides us with a Lower

bound for E(X) •

4(E(X}} < E4)(X) (2.4)

Combining inequality 12.4) with Theorem 2.1 allow us to derive a re-

arrangment type inequality

Corollary 2.1 Under the assumptions of Theorem 2.1, we have

EX,'(Xl >, E(X) E '(X) (2.51

Proof Simply follows from (2.11, combined with (2.4), and using that 4, is

increasing and E4t'(X) >o. 0



More genera(Ly, Let g: (a,b--*LR be a given increasing function.

Since d is convex, ¢' 1s increasing and so flt)-:4'[g(tl is increasing. Then

inequality f2.5) irriplies

EgfXlf(X) *' EgIXI EfiX) f 2.61

Inequalities (2.5) or 12.6) can be used to obtain bounds oni systerr reliabiL-

ity. For general results on rearrangement inequalities and applications

see Karlin and Rinotl [1981J and the references therein.

3. AN UPPER BOUND IN IRn

In this section we present a natural extension in iRn of the upper

bound derived in Theorem 2.1.

Let X be a random vector on the probability space (Q., Z, F) Luith

distr ution function F and let S C IRn be the support of X.

Assume that S is convex and Let o: S--IR be a convex differen-

tiabLe function. The gradient of 4 at x is denoted by 74)fxl. The conju-

gate convex f.jrirtinr, rift 4, i.-. rifinri hli

V(y= sup (x y - O)xlj 4.

x

In the sequel we assume that E(X), EXTV(X) and EV44X) exist

and are finite.

Theorem 31 E)(X) <, EXTV4 (X) - 4*IEV4)(X)) (3.1)

Proof Since 4. S---IR is convex and differentiable, the gradient irequality'

holds, i.e., *(a) - >f4) [ > ,'-I) TV74)p) for all a, e S. 13 2)i

- **.*.
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Setting 1 = X in (3.2) and taking expectation with respect to F in inequality

13.21 implies

E,t.(X} .E'T 4 M + ,)(C - a TEV({X] for all oL e S.

Hence,

EW{XJ ) EX T4{X1 + inf {<Fcef}- c E74{XJ). (33)

Note that:

inf a{) - a ETVX1) = - sup (a T E7{X1 - 4(aj) = - 1* (E< {XII.

InequaLity (3.11 foLLows immediately from (3.3). 0

Remark 13.1L Fn alternative proof of Theorem 3.1 may be derived using

the foLLowing usefuL relation: (see RockafeLLar [1970J, p. 2571

4* ({%4dz) = zT 7<z} - 4{z 13.,

Setting z=X and taking expectation in (3.4) we obtain

E(X) = EXTV7(X) - E * (V7(X} (351

But since ( is convex so is (* and hence by Jensen's inequality

+*(EV (X11 <, E4*(/(Xl1 1361

Then (3.5) combined with (3.6) implied (3.1). This proof will be useful to

refine the upper bound; see Section 6. 0

Remarks 3.2

(1) If + is concave InequaLity 3.1 is reversed.

(21 As mentioned in Remarks 2.1 (3), Theorem 3.1 remains

vaLid if instead of 7 . we substitute any ze a= . 0



The one dimensional version of Theorem 3.1 In=l, S=fa,bJI provides

us with the upper bound E4)(X) <, EX4)TXh - ,* (EVIXjJ: = C The next result

ShOWuS th,,t the 'Curd C is t, ,t I , t,.ir, tlc-' upper bound D def ived iii

Theorem 2.1.

Theorem 3.2 Under assumptions of Theorem 2.1, we have

E4)(XI < C <, 0 (3.7)

Proof For any conv\ex functio 4 and any c, d,-r '-F- 1h-,' E dora w* the

inequality

hotd4; SiJh.titiitinn in (3 R . EXt.'X_} e (., = rinrn 4, ar,,

p = E4'IX) e range 4' c dom $*, the result 13) foLloLUs [

4. COMPARISONS OF BOUNDS IN IR

Throughout this section 4: FI is a given convex differentiable

convex function and X is random variable with distribution F and density f

with support (a,b). We compare the upper bounds

C = EX0'IXI - 4*(E4'IX)) and D = € 1EX('M) with the foLLowing

E4)'(XI

well known upper bounds-

Edmundson-Madansky [ 19561

EM: x) (b-,) (a) + (x-b) 4o (b) 141)

b-a

where x: = EXl < oo, [a,bl is a finite interval.

',#'." "-,.-' -,---.'. z .- ', "'.,-".-"..'-;t; ,.-'..' ". .'.",.' ... , ',m. -,.- .- .. , . ,, ,, ', '.. .- ,A' -A .'-A" " " " , ,- --



Bert-T a[l-Hoclhrrari I ia72

BH VXI I ° L f + fxl! d -a) 4Z

2 - :-x - ib-x x-a

where x EIXI ,: [a,bI is a finite interval, and

* b

d =E X - = I- dFIx)=2f I x-x) dFtx) is the

expected absolute deviation about the mean. Using this

z additional information on the random variable X. it is shown

that BH gets closer to E4IX). =- than EM i.e,-) , BH < EM

Remark 4.1 The upper bound BH can be obtained for an infinite interval

[a,b), - -o < a < b < + o, under additionaLs assumptions on

4); see Ben-Tal and Hochman (1972). D

ExampLe 4.1 O(X) -x x>o, X-U (0,1) Thenx = 1/2, d 1 /4, - = /3.

Using (4.1) and (4.2) we obtain EM = 1/2 and BH 3/8.

Here 4* ly) = 1/4 y2 and then we compute C = 5/12,

0 = 4/9. Jensen's inequality yeilds the Lower bound

J:1/4 andJ (J < BH <C , D< EM. [I

'4

,: The next example illustrates a situation where EX4'IX) and E4)'(XI

(and hence C and D are easy to compute whiLe E)(X] requires the

a' . evaluation of a complicated integral. Moreover, in this example, the

, upper bounds BH and EM are shown to be trivial., i.e, BH-=EM- * ,

a.,
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Example 4.2 Let Ix) = -Ln O1-x 2) -1,x,,I, and Let X be a random variable

with density fJx)-3/201-x 2 j for o,x,1.

Then, 4 = -. J U-x21 Lrl (1-x2) dx (4.3)
2 0

To compute the integral (4.3) we use the following known

integraLs (see e.g. Gradshteyn and Ryzhik (1980) pp. 557-558):

., 'o xA I Ln (+ xl dx = I/A (Ln2-pR(A+ M (;A>-I)

Jl x - Ln (1-x) dx= 1/\ (p(l)- p(A+I)I (WA-1)

where t41) = -', T = 0.577215...EuLer's constant and the functions

, 3 satisfy

qI4x+1) ,(xl +- , x?+1 i-4-f )=-2p(xI, x>O {seee.g. (12lp945).
x 2 2

After some algebraic manipulations one obtains ) -- 5/3 - 2L2

.- .280372.

The conjugate function is given by

* (y) =l -1I + Ln 01 - _ _ 2_

EX)'(X)- 3110 x 2 dx = 1, E(X) = 311o xdx = 3/2.

Hence, 0' E()'(X)) ,0*(3/2) = 0.4653 and thus C= 0.53468 and

0 = 4 (2/31 = 9/5 - 0.58778.

Jensen's inequality yields the Lower bound J = 4(1x) = ( 3/8)

0.1515. A rough estimate of" could be obtained by averaging the upper

bound C and the Lower bound J to give 0.34309.

Finally we note that since here @{1) = +oo, EM = BH a +oa. lIt can

be verified that d ,,0.) 0
W"



In Theorem 3.2 we show that C < 0, and Ben-Tal and Hochman

prove that OH <, EM. Examptes 4.1 and 4.2 illustrate situations where

C < 0 < EM. In fact we tested many other examples and found C , EM.

This inequality is not, however, always valid as illustrated in our next

example.

ExampLe 4.3 Let 0(X) = 1 - - x - i2)1/2 , O,<X2 and

f2X) 2 ( /(Xl- 2) v 2 , 0 ,<X ,<2.

4-1f"

Then, x = I, EM = 1, BH z 0.7766, J = O(x) = 0 and$ = E4(X- 0.447. The

'- conjugate 0* is 01* (y) = y(1 + 2 + 1, (4.3)
,.~' Jt+y ,

EX,'{X) = 3 - 4 ., 2.1065, and EO'VX) = 0.
3(4 - Tr)

Hence (1* (Et'(X)) = 0*(0) = 0 and then C = 2.1065 > EM = 1. D

Note that the bound 0 is not computable here since the

assumption of Theorem 2.1 E0'X>0 is violated. The example not only

demonstrates that EM is better than C, but atso that the bound C may be

a "bad" upper bound. However, we show in Section 6 that the bound C can

be considerably improved to be even sharper than BH; see Theorem 6.1

and ExampLe 6.2.

We have already mentioned in the introduction, that the coMpu-

tation of the upper bounds EM and BH requires a finite mean x. This is not

the case for C. Further BH requires the value of d which may be difficult

to compute. In the Last example of this section we consider the case

when x andd fail to exist and therefore the upper bounds EM and 8H are

not availabLe.
iI

.q



ExampLe 4.4 Let X be a random variable with density

flx)- 2 0 <x< +omandLetOx) -x.
TIr + xi

Then -4 10 2~ ~x~ dx =-2 ..E -2.8284, and EX4tV) -12

EX'iX) = -42. Hence C = -2 -€t* i-4']= I-- . 1213. £1
2

5 COMPARISONS OF BOUNDS IN IIn

Gassmann and Ziemba 11986) extend an idea of Edmundson and

Madansky (1956) to derive an upper bound on the expected value of a

convex function of a random vector. The bound is given as the solution

of the foLLowing Linear program: (see Gassmann, Ziemba (1986),Theorem 1)

m m m-
GZ=max(XT(vi) I: z. 1=1,Z vo=x io (5.1hk i-l i=i i=1 I I

where 0: S-+IR is a convex function, S C IEn is convex, 1vI. ... , Vm ) are the

extreme points of a bounded convex polyhedron containing S, and

x = (EXI , ... , EXn)T is the finite mean of the random vector X. We compare

the bound GZ with the upper bound derived in Theorem 3.1:

C = EXT €7(x) - 0*IEV$(xl).

Example 5.1 (Taken from Gassman-Ziemba [19661 p. 42.)

t(1X1, 2 e fix x2)  ( J1 1 xx2 i 2 2'

0 otherwise

'P ',' W,,-,'J #,,,t '-€ €= ' W".,1. l'L ,,*,* ,',J9* " ..' ,' r,,." . - .', ,r, - ." " ." d, -- ,-,.° .. ,, . -. . ..' . - . * .* .,". ', .' . ." . "'
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Then S ={x 1,X 1: x 2v +V2 and

~=Ee~kL JP J 1~~x~ 22 xd 2 --.21 s

E 2An-' el 1 1.0W4 52

Using (5.11 the best upper bound derived in 1111 is shown to be

GZ 1.54308. We now cnmpiite the hnind rl The cnnjj9Ate Of

44W1, x2) e"' is V* (YI, Y2) = yj Lny1 -yj and EV4 NX) = (EeXI,. 01T=

( o) (using 5.2), then * tWvp(x)) = (p (- 0)~ =~ ( -j-.Y8
e e e

Now,

EXV7(X = E(X P- 3 t Lr ff7 -X d>( 2dx1=

3e -21 - 0.2146 arnd then C =-1.20948 <(GZ 1.54308.
ze

Note that Jensen's inequality yields the Lower bound J =f xl = (0,0) 1

and thus an estimate of~ could be obtained by

J +C = 1.10474 giving an error of about 7%.D
2

*For a random vector X = (X1, ... Xn )T with independent components Xi..

the Edmundson-Madansky and Ben-TaL-Hochman upper Bounds are

available where S is an n-dimensional rectangle of the form
n
TI 1 [8. b.) They are given by the following expressions [1
H=
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1,=0 . ,hc,,',c, 0 bka

bk - ak

3H= Ifl 1 P T pk. ) ta.,....... ap (5.4)

63  k I n

where &k is I or 2 or 3, & 3 is the set of 3n n-dimensionaL vectors whose

components are aLL l's and/or 2's and/or 3's,

dk -k _k

1 2 - - 2)'

k k
P k-F P kF k=a akk
3 1 2-' I  k, a2  a3 

=  .

As mentioned in PI], for the independent case the upper bound GZ is in

fact worse than EM (and therefore BH).

ExampLe 5.2.

2 25x x2

Let fx V X 2  +2 + XIX2 Xl-X2-'

12 2 2 2

fix1, x9 = 1 if o,( X • X2<1
Lo otherwise



| I

Then, -E,) 1x1,x 1 UIsing (5.3) and (5.4) we obtain

respectively EM=-f10,0) + $ 10,I) + 411,O) + 44,1)) - _

,4 4

and BH 1 10.01 + 40.11 + 4)1,0 + 4 (1.11) I 0, 1) + 1,0) +
16 8 2 2

+ )-L 1) *-- From (5.1) we have-
2' 2 4 2 2 8

A23A~3
GZ=max -- + 2A+24 .A + A2 + N +N N +N

2 2 2

Now we compute the conjugate function at the point x* = ×1x*, X2 *)T

**I, x 1 Ix* e) T ifx*+e), A - 1- 1), e = 11,1)T
1' X2 2 -1

and E V 4(x , x, J= 2,0)T , ExV4)x) = Then 4*(E V74xl) =
1' 2 2

V" (2,0) = 1. This !)eLds the upper bound C= I and we have

< < BH < C <EM <GZ.

FinaLy Jensen's inequality yields the lower bound J $ 4dxJ :

[2' -2) = 0. (Note incidentLythat J 2 + _= $_=11)
2 2 2 4

50

The bound C is in fact sharp (i.e., C = $) for many examples

For example, consider a piecewise Linear function of the

form:

.5,

'p



1 ' p (x-trl n " 5 1

where t is fixed This is the form of the recourse function in

stochastic Linear programming tsee Wets 196611 In this cas.e,

k
' inf v i i 1

from Rockafeilar (1970), Theorem 16 5, Wher.

fv4> IIsuplv -I-t II ,.,
I I T

I"t if v' = T?

I+ a otherwise

From f5.1,

rVt if V"F' Co In' I ,., kI

otherwise 15.8)

U! 1  P ~
,U oS5



Let 0(x) = (x-t) TrrlxJ ('iixl not necessarily unique) and Let

VWdx) = nTx), then EF.fxl = EI(x-t) T TYx)

= E(x tT7 ) - E (tTTs(:11I

= Efx T 1704 - V*(E(V44xJ.

where we note that E174(x4 r co (It i=I, ..., k. Hence, 4=C. (5.91

6. REFINING THE UPPER BOUNDS IN IR BND I~n

The upper bound C derived in Theorem 3.1 can be naturaILy sharpened in

the one dimensionaL case, when X is a continuous random variabLe with

density function fix).

Theorem 6.1

Let @: IR --*IB be a convex differentiatbe function and X a random

variabLe with support (a,b) and density f(x). Then.
b ,

E,X) <" (K Iab) - f x$(x) fix) dx - )* (E4(X):= C. (61)
2 a

where K(a,b): = bO(b)ffb) - a4ta)f(a) (6.2)

Moreover C is sharper than C, i.e., C , C [6.31

Proof:

From Theorem 3.1 in IR, EOxJ <, C = EX '(X) - 0*(EO[X}) (6.4)

b
Integrating by part EX V'(X) = J x '{x f Ix) dx we obtain from (6.4:

a
b b

E4x) <, (Wxx) f (x4) - J 0(x) fix) dx - J x0(x)f'x)dx-0*EE0(X))
a a



b

-K a,b - EVA)I - f x.e(xj f'Ixi dx - *(E V'XM) (6 5)
a

and then 16.11 foLLows. To show that C < C, observe that

C (EX'OX) + EO(XJ - 0*Eq(X)) - (C + E (XIl and that EO(XI <, C,
2 2

impl1jing (6.3) l

ExampLe 6.1

We reconsider ExampLe 4.3 given in Section 4.

2

K(a,b) = K(0,2) - and j x x)f'(x) dx = - This yieLds the
- o 3(4-1)

upper bound C = 16-3T - 12766 < C = 2.1065. Note that we
6(4-Tr)

stiLL have E=I < C: but see ExampLe 6.2. 0

It is interesting to note that when X - U (a,b) then the upper

bound C is better than EM. For if X U a,b} then EM =---- + {.b)
2

and C 1 (b C + 0 (a)- * (C~l where t.: = t{b-*a) e (0'(al, 0'b))

2 b-a

(since 0 is convex).

Hence, from the inequaLity Ob) + 0*(C) >, b C, it fI oLows

immediateLy that C < EM.

FoLLowing Remark 3.1 of Section 3, we can further sharpen the upper

bound C by using a Lower bound estabLished by Ben-TaL and Hochman

1972) which is better than Jensen's Lower bound. Let g: IR-.FI be a convex

function, and Y a random variabLe with support (a,bl then:



EgM Pq(g + ) +(13) g (g - d = L I,d) 6.61Egl! 7 Is lrj + } +{I g 2 11-sI Lg

and L ti.d) >, g[E[Y)j. where = EM < oo, d = E I Y - I and P: =Pr'-.

From (3 51 we have E)(X) = EX'IXI - E*[$(XII (6.?A

AppLying (6.6) with g: = ,)* and Y: =' XI one obtain: fwe denote

= E4'[X))

E+)*('IX)) >, (4) + + (1-p3) 0* d > ((0* (E'[X)))

and hence from (6.7) this implies

E)(X) < EX )'IX) -L V (d, -C, c. (0) ( )

where p = Pr { )'X) >, )' and d -El t'(X)- )'.

Furthermore, if X is a random variable with density fIx), even sharper

bounds are possible. FoLLowing the proof of Theorem 6.1 together with

(6.9) we obtain
b

C 2 (K (ab) -f x {x)f'(x)dx - I_, . ,6.10)

a

Clearly, C ,< ard 11<C. A natural question is whether

CR orCR is better than BH? It seems difficult (if not impossible)

to prove such a result in general. However in our worst

examples (4.3 and 6.1) this appears to be true as demonstrated

below.
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We have already computed in ExampLe 4 3and 6.1 - 0 447

BH = 0 7766, E:''X) c-- 2.10?, K 10,2) = 8 , Jx@!xif'ixJdx- 3.rL-,4
4-Ir 6 3(4-nj

For the random variable '(XI we compute p=1 and d 2

Then using the conjugate 4* given in (4.3) we obtain

L41 (d, I1 : 1 (@ (dl + ( * (-d)) = 1.5354. Using (6.9) and (6.10)

it follows that 0.5711 and= 0.5088. Thus,

< CR< C <BH<EM<C<C.

We now turn to the problem of refining the bound C in IRn. For a random

vector X = 1,x .... ,Xn) uth independent components Xi the Ben-TaL

Hochman Lower bound is available when S is an n dimensional rectangle

n
of the form S = IT (a., b.; and is given by:

n M I

-LhITT h (a ,an 16.111
2 k-i1

where h: -n -4F is a convex function, 6k is I or 2 , is the

set of Zn n-dimensionaL vectors whose components are aLL
I'sor/and k k k k - k

2 P2 2' 211k

and d , , denote the corresponding parameters of X..

To apply 16.11) as in (6.7) and 16.8) requires showing that the random

vector



7 t1'X nx,...,..,J has independent components, and computing

the ccrreslondir pararneters i, " and d. This fairly

complicated task can be avoided by characterizing the

class of functions for which the function ep.:=*7{))

is convex. Moreover this allows Us to express the new

upper bound explicitly in terms of the problem's data

(without requiring knowledge of 4*J, see Theorem 6.2.

The following result gives a sufficient condition for q)

to be convex for a Large class of functions arising in

appLications.

Lemma 6.1

Let -: ScFP -. FI be a given twice continuously differentiabLe+

function. If g: Fin -+ In, gz] = 7 W(z) is convex, then

,(z• = *(7$(zJ is convex.

Proof

,i is a convex function if and onLy if it satisfies the gradient

inequality, i.e., for any x and y in S

*P(xj- .(yi > (x-yJf tp(yl. 6.12)

By definition. ( (y) = 4 V rv 4'yJ] and thus 7 q$y)=72 y))(VOLj)

,,



where 17' Vy) denotes the Hessian of -I, Using 4* = (V',

!t foLLows that 7,pI[y) = 2 (y).y. InequaLity t6 12 then

becorrmes

~ 7OxI-0 I y ~l-j T 2~~ (6 13)

Now, since 0* is convex, aplying the gradient inequality to
* and using V 0* = V 7 - , we obtain

V IV 7lx)- * V 0(y)) > I (x)- y))T y.
Thus to prove (6.131 it is sufficient to show

(70(X)-V0(ylT y,> (x-yT72 0 (y) y (6.14)

Since gfx): = 70(x) is assumed convex, we have

V70x) - V0Y) .(x-y) V2 4(y). (615)

Multiplying (6.15) by y>,o (recall that ScIRn.' yields (6.14).

El

We can now derive a refined upper bound for a random vector X with

independent components Xi. We make the foLlowing assumptions:

(11 S= RI(a, bl C IRn

i=l I +

(11) C1-) is convex

Theorem 6.2

Suppose I) and II) hold. Then,

E-(X) <EXT7(X) - L : - CR where (6.16)

L - (It I ia ,..., a a 0 ,..., a (6.17L I2 -1I I .n

, "~~A k n''"" ,; , :"; "'. :Z':<,'-.: '',": '..:," :" Z,-.-',zz,-..:,- ,z,,'- ,: :.:,.-..,.--,-.- ...-.- ,.-,--.:.:.:.-..



I

Proof

From 167) infl l we have

E,', : T ,,l:) - E=I7,;JJ

Under ssumptions I) and 1ill, Lemma 6 1 is applcable and thus

E kPX) = E,4* (7!XI I>,L( as defined in [6.11) Moreover,

using V(zl = zT7, (zl- 'dzJ, the expression (6.17) follows. U
Exampte 6.3

We reconsider Example 5.2 where we already computed

= 0.25, EM = 0.,5, C = G50, BH = 0.375, GZ = 1, EXT7[(X = 1.5 and
di = d2  Z-, = =R2 The assurrtions (I1) and fill are clearlu

24' 2
satisfed ad thus Theorem 6.2 is apptlcabLe.

We compute p3! =--P = I and thus using f61?)
1 33 2 . ) 3 3 1,+

4 +4 1 + (4

with tp(z 1,z I= (z !  4z,, zI -,dzI, z =Z 2 + L Z2 +

2e L 2 1.5 2h y2 1 2 2 15

Then L,,= 1.1875 which yieLds; the upper bound CR 0.3125 RBH=0 375
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* 7. CONCLUSIONS

WI? td.e 9 l Ii_ I li.per LICurids for th-, :.:[- --f- i- . ..

function usinii gradient and convex ,(oniugate 'uinction information. Le

have shown that these bound---: and their etea ..iznl- c.t be better thar

previous bounds in several examples. We al.so dern:rrst ruL tiouJ our

bounds are especially UE Cut u'heri the original integral is corryticatud

but has a gradient that c~n be e'sity integrated or when the information

required for other bounds (e.g., moments) is not availabLe. The new

bounds are then applicabLe in a variety of applications with these

characteristics.

4 ! .~ 1 t 4 .1 t C* *~ C'C V c: ~ Pt
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